If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18b^2-21b+5=0
a = 18; b = -21; c = +5;
Δ = b2-4ac
Δ = -212-4·18·5
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-9}{2*18}=\frac{12}{36} =1/3 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+9}{2*18}=\frac{30}{36} =5/6 $
| 79=4x-1 | | (x-8)(7+8)=0 | | w2+19w+90=0 | | -18y+9y-5y+8y-(-20)=14 | | x^2/(0.126-x)=6.31*10^-6 | | q2+26q=11 | | 62=r+6 | | 11=d+6 | | 20n^2-13n-2=0 | | 4c+3=32 | | 6(x+2)+4x=52 | | -x+4=-3x+2 | | 3f+14=2f+14 | | z=-10−z | | 5x+13=-4x+(-5) | | -9t=-8t+8 | | -6y(y-4)=24 | | 7r=6r−4 | | 2x-(-10)=-5x-4 | | x2+13=28 | | 2x+3x+3=-7 | | .6666n+4=10 | | x+15=3(X+5) | | 3x=36x^2 | | 7u-4=0.25 | | 10b+113=71-3b | | 2y+1-2(-8y-1)=6(y-2) | | w^2+19w+90=0 | | 7,9-2x+1.2=4,7 | | -5(2x-6)=7(2x-4 | | .3435435494341374354x+5435435721424654534=2 | | I8x-2(x+9)=x+47 |